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An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magneto-
hydrodynamics (MHD) is described. The time-implicit discretization is able to step over
fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving fea-
tures. A Jacobian-free Newton–Krylov method is used for the nonlinear solver engine.
For preconditioning, we have extended the optimal ‘‘physics-based” approach developed
in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J.
Comput. Phys. 178 (2002) 15–36] (which employed multigrid solver technology in the pre-
conditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite
grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential
Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that
the solver performance is independent of the number of grid levels and only depends on
the finest resolution considered, and that it scales well with grid refinement. The study
of error generation and propagation in our SAMR implementation demonstrates that
high-order (cubic) interpolation during regridding, combined with a robustly damping sec-
ond-order temporal scheme such as BDF2, is required to minimize impact of grid errors at
coarse–fine interfaces on the overall error of the computation for this MHD application. We
also demonstrate that our implementation features the desired property that the overall
numerical error is dependent only on the finest resolution level considered, and not on
the base-grid resolution or on the number of refinement levels present during the simula-
tion. We demonstrate the effectiveness of the tool on several challenging problems.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The magnetohydrodynamics (MHD) model is useful for studying the macroscopic behavior of fully ionized gases (plas-
mas). Plasmas exhibit a wide range of complex behavior, and are intrinsically multiscale both temporally and spatially.
While MHD provides a tractable model for the macroscopic description of plasmas, it still presents formidable challenges
for the numerical modeler. In particular, MHD (even in its simplest form) supports multiple time scales (which manifest
in the form of waves) and multiple length scales (which manifest in the form of microscopic layer formation, often with mac-
roscopic relevance).

Algorithmically, the multiscale nature of MHD needs to be addressed separately in time and space. Spatially, the dy-
namic formation of thin layers requires grid adaptation that can respond dynamically. While there are many options
available for dynamic grid adaptation depending on the spatial representation of choice (e.g., r-refinement, h-refinement,
. All rights reserved.
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p-refinement), our focus here is on h-refinement in the finite-volume context via structured adaptive mesh refinement
(SAMR) [8,7]. A SAMR grid is organized as a hierarchy of nested refinement levels, with each level comprised of a union
of rectangular patches. As the locally refined grid evolves to follow important features in the solution, these levels are
created and destroyed as needed, and the solution is transferred from the old grid to the new grid to continue the sim-
ulation. While all approaches to adaptive mesh refinement have different strengths and weaknesses, we choose SAMR
for a specific set of advantages it provides us. Firstly, SAMR employs uniform-grid stencils in large parts of the domain,
thus providing higher accuracy than stencils with the same structure on non-uniform grids of comparable resolution [5].
Secondly, uniform-grid patches on all levels allow us to reuse single-grid smoothers and solvers developed for uniform-
grid applications, such as geometric multigrid. This is important, since it is well known that exploiting geometric infor-
mation when available results in better algorithmic performance [11,62]. Finally, upon regridding, SAMR only requires
solver-setup operations in newly created patches, thus minimizing setup overhead. In this application, we employ the
SAMR package SAMRAI [32] to handle grid and data management operations. SAMRAI is an obvious choice, since it pro-
vides interfaces [46] to state-of-the-art nonlinear solver packages such as PETSc [3].

Temporally, our interest is on applications where fast time scales are parasitic to a slower dynamical time scale of
interest (such applications arise, for instance, in fusion [55,53] and space plasmas [28,49]). Accordingly, it is of interest
to step over such fast time scales in order to resolve those of dynamical interest, while preserving the temporal accuracy
of the approach. Explicit time-integration methods are subject to stability constraints that arise from the fastest time
scales, and are inappropriate for this purpose because they force the modeler to follow the fastest time scale supported.
Fully-implicit time integration methods allow stepping over fast time scales, since time steps are generally constrained
only by accuracy, not stability [37]. However, they require the solution of large-scale systems of nonlinear equations at
each time step, and fast, robust solution methods are necessary for implicit methods to be practical. Fortunately, New-
ton–Krylov methods [12] have provided such robust solvers in a variety of contexts [38], including MHD [16,15,14], pro-
vided effective preconditioning is used. In Refs. [16,15,14], the key for algorithmic performance was the use of multigrid
methods in the preconditioner stage.

Patch-based refinement in the context of MHD has been explored by many previous studies in the literature, both in the
context of finite-volumes (see e.g. [4,35,55,54,61,27]) and finite (and spectral) elements (e.g., [58,40,51]). In the finite-vol-
ume context, these studies have focused on various aspects of both the temporal and spatial discretization of the MHD equa-
tions on AMR grids. Spatially, authors have explored both staggered [4] and cell-centered [35,55,54] representations, with
special emphasis on the preservation of conserved quantities and the solenoidal property of the magnetic field. An interest-
ing study comparing the accuracy of finite-volumes/differences vs. spectral elements in an MHD-AMR context can be found
in Ref. [45]. Temporally, most AMR implementations have relied on explicit methods, albeit with some flavor of time step
subcycling for better performance (see e.g. [4,35]). However, a number of authors have explored more advanced time step-
ping algorithms, such as partially implicit [54] (where hyperbolic terms are treated explicitly, and diffusive terms implicitly),
implicit/explicit [61] (where some blocks are treated explicitly, while others are treated with a linearly implicit method), and
fully implicit [27] (albeit using unscalable direct solvers).

The focus of this study is to merge the SAMR dynamic adaptive-grid approach with efficient, scalable, fully-implicit time
integration, in the context of MHD. For simplicity, we focus our attention on the 2D reduced resistive MHD model [59,20,30],
which is rigorously valid in the presence of a large guide magnetic field. The reduced resistive MHD model has the advantage
of simplicity while maintaining a truly multiscale character, both temporally (because it supports the fast Alfvén wave) and
spatially (because it develops thin layers). Furthermore, mature fully-implicit technology is available [16], which will be re-
used for this study.

The advantages of fully-implicit SAMR are obvious, as it enables dynamic refinement while decoupling the time integrator
from the small explicit time step stability limits (which scale with the mesh size) that would arise in the patches of finest
resolution. Key to the effectiveness and scalability of the proposed approach is to generalize the multigrid treatment pro-
posed in Refs. [16,15] to SAMR grids. This can be achieved with fast multilevel methods that exploit the structure of the
mesh, such as the Fast Adaptive Composite grid (FAC) method [42], as has been already demonstrated in the context of
2D radiation diffusion [47].

Preliminary results on combining implicit time integration with SAMR for resistive MHD were first reported in [48].
Here we expand the study to include considerations of accuracy and provide details of our treatment of discretization
at coarse–fine interfaces. Section 2 describes the mathematical model and its numerical discretization. Section 3 intro-
duces the nonlinear solver of choice, Jacobian-free Newton–Krylov methods, and the preconditioning approach to make
it efficient. The specifics of the coarse–fine interface treatment for this application are provided in Section 4. Finally,
numerical results focusing on performance and accuracy aspects of the solver are presented in Section 5, and we conclude
in Section 6.
2. Numerical model: Current–vorticity formulation of reduced MHD

In the 2D reduced MHD (RMHD) formalism, the magnetic field component in the ignorable direction Bz is much larger
than the magnitude of the in-plane magnetic field ~Bp. As a result, Bz � constant and the velocity~v is nearly incompressible
(r �~v � 0), and the general MHD formalism reduces to [59,20,30]:
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ot þ~v � r �
g
l0

D
� �

Wþ E0 ¼ 0; ð1Þ

qðot þ~v � r � mDÞU ¼ 1
l0

~B � rJ; ð2Þ

DU ¼ U; ð3Þ
where U is the velocity stream function (~v ¼ ẑ�rU), U is the z-component of the fluid vorticity (U ¼ ẑ � r �~v), W is the flux
function (which gives~Bp ¼ ẑ�rW),~B ¼~Bp þ Bzẑ is the total magnetic field, J ¼ DW is the current, and q is the density (which
is taken as constant). Note that, as defined,~B is always solenoidal. The source E0 (the applied electric field in the z-direction)
has been included to balance the resistive decay of the equilibrium. The transport parameters (the kinematic viscosity m and
the resistivity g) are assumed constant. We note that ~B � r ¼~Bp � r since oz ¼ 0, but we keep ~B for the sake of generality.

Eqs. (1)–(3) are normalized as follows: ~B is normalized to the characteristic in-plane magnetic field B0, q to the constant
density q0, lengths to an arbitrary length L, and the time to the Alfvén time sA ¼ L=vA, where vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiq0l0
p

is the Alfvén
speed. The normalized set of RMHD equations reads:
otWþ~v � rW� gDW ¼ �E0;

otUþ~v � rU� mDU ¼~B � rJ;

DU ¼ U;

ð4Þ
where g is the normalized resistivity (the inverse of the Lundquist number) and m is the normalized viscosity (the inverse of
the Reynolds number). This set of equations is both elliptically and hyperbolically stiff. Elliptic stiffness originates from the
streamfunction–vorticity coupling and the diffusion terms. Hyperbolic stiffness arises from the linear shear Alfvén wave,
which for a homogeneous plasma is characterized by the dispersion relation x ¼ kk, with x the frequency, kk ¼ ~B0 �~k, ~k
the wavevector, and j~B0j ¼ 1.

While the form in (4) was successfully treated in [16], we have found that this formulation is not well suited for SAMR,
due to difficulties discretizing the high-order term ~B � rJ ¼~B � rðDWÞ at coarse–fine interfaces. Several discretization ap-
proaches were tried but all led to very high error accumulation along the coarse–fine interface that polluted the solution
and eventually caused the simulations to fail. This is similar to difficulties reported in [58] for an ideal reduced MHD formu-
lation. Instead, following Refs. [58,40], we use the current–vorticity formulation obtained by applying a D to the flux equa-
tion above, to obtain:
otJ þ~v � rJ �~B � rU� fU;Wg � gDJ ¼ �DE0;

otUþ~v � rU� mDU ¼~B � rJ;

DW ¼ J;

DU ¼ U;

ð5Þ
where fU;Wg ¼ 2½UxyðWxx �WyyÞ �WxyðUxx �UyyÞ�. This formulation is advantageous because it avoids derivatives that are
higher than second-order, and all dependent variables are determined from integration rather than differentiation. However,
it features two elliptic constraints instead of one in (4). Furthermore, its implementation requires modifications to the semi-
implicit preconditioner developed in [16] for (4), which will be discussed later in this paper (Section 3.2). Equation set (5)
needs to be complemented with boundary conditions, which are to be imposed on the dependent variables J, U, U, and
W. For the examples considered in this study (Section 5), we employ periodic boundary conditions in one direction. In the
other direction, we follow [16] and employ Dirichlet boundary conditions for all variables. For flow quantities, we enforce
impenetrable-wall U ¼ 0 (i.e., the normal component of the velocity vanishes) and no-stress U ¼ 0 (i.e., normal derivative
of tangential velocity components vanishes) boundary conditions. For magnetic variables, we enforce perfect-conductor
boundary conditions by setting J ¼ 0 and W to a constant (determined by the equilibrium). It is easy to show that, except
for small diffusive terms, these boundary conditions are consistent with the U equation and the W equation in (4) evaluated
at the boundary, and therefore are also appropriate for (5).

For the temporal discretization of (5), we will explore two approaches: a h-scheme (h ¼ 0:5 is second-order accurate, and
corresponds to the Crank–Nicolson scheme [17]), and a second-order backward differentiation formula (BDF2) [18,26]. The
h-scheme reads:
ðJnþ1 � JnÞ
Dt

þ ½~v � rJ�nþh � gDJnþh ¼ ½~B � rU�nþh þ fU;Wgnþh
;

ðUnþ1 �UnÞ
Dt

þ ½~v � rU�nþh � mDUnþh ¼ ½~B � rJ�nþh
;

DWnþh ¼ Jnþh;

DUnþh ¼ Unþh;

ð6Þ
where nþ h quantities are calculated as nnþh ¼ ð1� hÞnn þ hnnþ1. The BDF2 scheme discretizes the temporal derivative terms
by fitting a quadratic polynomial using the nþ 1, n, and n� 1 time levels, and approximating the time derivative at time
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level nþ 1 by the derivative of this polynomial. For a constant time step, this results in the following approximation of ot J at
nþ 1:
ot Jjnþ1 �
3
2 Jnþ1 � 2Jn þ 1

2 Jn�1

Dt
with a similar expression for otU. With BDF2, the remaining terms of (6) are evaluated at the new time level nþ 1 (i.e., with
h ¼ 1). Unlike Crank–Nicolson, BDF2 features robust damping of dissipative terms [26]. The purpose of considering these two
approaches is to compare their error propagation properties in the presence of coarse–fine interfaces (Section 5).

Within AMR patches, spatial operators in (6) are discretized using second-order centered finite differences. Following
[16], advective terms are discretized in non-conservative form, using centered differences. Boundary conditions (either at
physical boundaries or at coarse–fine interfaces) are imposed using ghost cells. The spatial treatment of coarse–fine inter-
faces employed in this application is described in detail later in this paper (Section 4).

3. Nonlinear solution algorithm

Our general approach to the solution of (6) is via preconditioned Jacobian-free Newton–Krylov methods (JFNK). These
methods have demonstrated their effectiveness in many similar applications [38], including 2D reduced resistive MHD
[16] and Hall MHD [15], and 3D resistive MHD [14]. Our approach generalizes that of [16] in two fundamental ways: firstly,
we have adapted the preconditioning strategy to deal with the J �U formulation instead of the W�U formulation; and sec-
ondly, we have generalized the single-mesh multigrid treatment advocated in that reference to AMR meshes using the FAC
method [42]. In what follows, we summarize the JFNK philosophy and our approach to preconditioning. The next section will
deal with the AMR aspects of this application.

3.1. Jacobian-free Newton–Krylov methods

Let F : Rn ! Rn be a nonlinear function and consider calculating the solution xH 2 Rn of the system of nonlinear equations
FðxHÞ ¼ 0: ð7Þ
Classical Newton’s method for solving (7) generates a sequence of approximations xk to xH, where xkþ1 ¼ xk þ sk and the New-
ton step sk is the solution to the system of linear equations
F 0ðxkÞsk ¼ �FðxkÞ; ð8Þ
where F 0 is the Jacobian of F evaluated at xk. Newton’s method is attractive because of its fast local convergence properties,
but for large-scale problems, it is impractical to solve (8) with a direct method. Furthermore, it is often unnecessary to solve
(8) using a tight convergence tolerance when xk is far from xH, since the linearization that leads to (8) may be a poor approx-
imation to FðxÞ. Generally, it is much more efficient to employ so-called inexact Newton methods [19], in which the linear
tolerance for (8) is selected adaptively by requiring that sk only satisfy:
kFðxkÞ þ F 0ðxkÞskk 6 gkkFðxkÞk ð9Þ
for some gk 2 ð0;1Þ [19]. When the forcing term gk is chosen appropriately, superlinear and even quadratic convergence of
the iteration can be achieved [21].

While any iterative method can be used to find an sk that satisfies (9), Krylov subspace methods are distinguished by the
fact that they require only matrix–vector products to proceed. These matrix–vector products can be approximated by a fi-
nite-difference version of the directional (Gâteaux) derivative as:
F 0ðxkÞv �
Fðxk þ evÞ � FðxkÞ

e
; ð10Þ
which is especially advantageous when F 0 is difficult to compute or expensive to store (as is the case in this application due to
the presence of multiple grid patches). While the selection of a suitable differencing parameter e may be non-trivial for some
applications, it is generally well understood [34]. For this application, we choose:
e ¼
ffiffiffiffiffiffiffiffiffiffiffi
�mach
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kxkk

p
kvk ;
where �mach is machine precision and k � k refers to the l2-norm. In our applications, which are performed in double precision,
e is typically on the order of 10�10.

Among the various Krylov methods available, GMRES is selected because it guarantees convergence with non-symmetric,
non-positive definite systems [52] (the case here because of flow and wave propagation), and because it provides normalized
Krylov vectors kvk ¼ 1, thus bounding the error introduced in the difference approximation of (10) (whose leading error term
is proportional to ekvk2) [44]. However, GMRES can be memory intensive (storage increases linearly with the number of
GMRES iterations per Jacobian solve) and expensive (computational complexity of GMRES increases with the square of
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the number of GMRES iterations per Jacobian solve). Restarted GMRES can in principle deal with these limitations; however,
it lacks a theory of convergence, and stalling is frequently observed in real applications [39]. Here, we focus on minimizing
the number of GMRES iterations per Jacobian solve for efficiency and robustness by: (1) using inexact Newton techniques (as
described above) and (2) improving the condition number of the Jacobian matrix by preconditioning the problem. The next
section describes our approach to preconditioning.

3.2. Preconditioning

Implicit time differencing eliminates time step stability constraints stemming from Alfvén waves, advective terms, and
diffusion operators, allowing us to select time steps independent of the level of mesh refinement. However, some of the
mechanisms that are sources of numerical instabilities in explicit methods continue to manifest themselves in implicit
schemes in the form of ill-conditioned algebraic systems, which iterative techniques have difficulty in handling.

As is explained in [16], there are two sources of ill-conditioning in the system of reduced MHD equations: elliptic oper-
ators and hyperbolic couplings. The former can be dealt with effectively with multilevel techniques. The latter, however, can-
not be unless the hyperbolic couplings are reformulated in a multilevel-friendly fashion. Refs. [16,15] provide a systematic
way of doing this, which we follow here.

3.2.1. Approximate formulation of the reduced MHD system
Krylov techniques are employed here to approximately solve (8) to the dynamically selected tolerance (9) in each Newton

step. Hence, the construction of the physics-based preconditioner necessarily starts from the linearized system of equations.
For the system in (5), the linearized equations read (in block form):
Lg �h~B0 � r UJ;W UJ;U

�h~B0 � r Lm UU;W UU;U

I 0 �D 0
0 I 0 �D

0
BBBB@

1
CCCCA

dJ

dU

dW

dU

0
BBB@

1
CCCA ¼

rJ

rU
rW

rU

0
BBB@

1
CCCA; ð11Þ
where the diagonal blocks Lg and Lm read
Lg ¼
I

Dt
þ hð~u0 � r � gDÞ; Lm ¼

I

Dt
þ hð~u0 � r � mDÞ
and the off-diagonal entries UJ;W;UJ;U;UU;W and UU;U are given by:
UJ;W ¼ �hðrU0 � ẑ�rþ fU0; �gÞ; UJ;U ¼ hðrJ0 � ẑ�r� f�;W0gÞ;
and
UU;W ¼ �hrJ0 � ẑ�r; UU;U ¼ hrU0 � ẑ�r:

In order to formulate an approximate, multilevel-friendly form of the linearized set, we follow [16] to reduce the order of the
dJ, dU equations by factoring out a Laplacian operator (thus rendering equations for dW, dU, respectively). This is done by first
eliminating dJ and dU from the corresponding equations in favor of dW and dU (using the linearized elliptic constraints). In
the dJ equation, one can factor out the Laplacian operator trivially (since the Laplacian is a linear operator, and the J equation
was obtained by applying a Laplacian operator onto the W equation in the first place). In the dU equation, the Laplacian oper-
ator can be factored out approximately in the same fashion as was shown in [16]. After these transformations, we end up
with the following approximate system:
P
dW

dU

� �
� D�1 rJ

rU

� �
�P

rW

rU

� �� �
;

where
P �
Lg �h~B0 � r

�h~B0 � r Lm

 !
is the same hyperbolic operator found in [16]. We note that the factorization of the Laplacian operators enables us to solve
for dW and dU directly in the preconditioner, because no high-order differential operators of the original flux–vorticity for-
mulation remain. After solving for dW and dU, one can recover dJ and dU by solving:
P
dJ
dU

� �
¼

rJ � hðd~u � rJ0 � d~B � rU0 � fdU;W0g � fU0; dWgÞ
rU � hðd~u � rU0 � d~B � rJ0Þ

 !
;

which again requires inverting P.
Following [16], systems of equations P~v ¼ ~b are solved with a few iterations (2 in this paper) of the stationary method

obtained from the splitting
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P ¼
Lg �h~B0 � r

�h~B0 � r Dm

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M

�
0 0
0 Dm �Lm

� �
with Dm ¼ diagðLmÞ the diagonal of the advection diffusion operator Lm. This splitting results in the iteration:
~vkþ1 ¼~vk þM�1ð~b�P~vkÞ:
The inversion of M involves first a block factorization:
M ¼ I �hð~B0 � rÞD�1
m

0 I

 !
PSI 0
0 Dm

� �
I 0

hD�1
m ð~B0 � rÞ I

� �
;

with PSI ¼Lg � h2r � ð~B0D
�1
m
~BT

0rÞ, and then the inversion of the resulting matrices, yielding:
M�1 ¼
I 0

�hD�1
m ð~B0 � rÞ I

� �
P�1

SI 0
0 D�1

m

 !
I h~B0 � rD�1

m

0 I

 !
:

The implementation of M�1 only requires the (trivial) inversion of Dm (which is a diagonal matrix), and the inversion of the
semi-implicit operator PSI. The latter is a parabolic operator, amenable to multilevel techniques, as described in [16].
4. Adaptive mesh refinement

The previous discussion has considered the generalization of the physics-based preconditioner proposed in Ref. [16] to
the application at hand, without regard to the specifics of the spatial discretization employed. In what follows, we describe
the AMR-specific details of our treatment of the MHD equations, with particular emphasis on (1) the spatial discretization at
coarse–fine interfaces, (2) the generalization of multilevel solvers for SAMR grids, and (3) regridding and its impact on time
integration.

4.1. Structured AMR grids

Let X ¼ ½xlo; xhi� � ½ylo; yhi� be a rectangular computational domain. We create a discrete computational domain by subdi-
viding ½xlo; xhi� into nx subintervals with centers xi ¼ xlo þ ðiþ 1

2Þhx with hx ¼ ðxhi � xloÞ=nx for i ¼ 0; . . . ; nx � 1. Each subinterval
has faces located at xi�1

2
¼ xi � hx=2 and xiþ1

2
¼ xi þ hx=2. Likewise ½ylo; yhi� is partitioned into ny subintervals with centers

yj ¼ ylo þ ðjþ 1
2Þhy with hy ¼ ðyhi � yloÞ=ny for j ¼ 0; . . . ;ny � 1 and faces yj�1

2
¼ yj � hy=2 and yjþ1

2
¼ yj þ hy=2. The tensor prod-

uct of these subintervals partitions X into a collection of computational cells Xh ¼ fXi;jg each with size hx � hy centered at
coordinates ðxi; yjÞ. These ideas are readily extended to the case where X is a union of non-overlapping rectangular regions,
and we continue to use the same notation Xh to denote such a collection of computational cells. Such regular grids are in
widespread use in computational science and engineering, and a great deal of high quality software that is tuned to regular
grids, such as geometric multigrid methods, is available.

Let K P 1 and X1 � X � X2 � � � �XK be a nested set of subdomains of the computational domain X. For simplicity, assume
that each X‘;2 6 ‘ 6 K is a union of non-overlapping rectangular regions; these are the subregions of X where additional
resolution is desired. A composite structured AMR (SAMR) grid Xc on X is a nested hierarchy of grids
Xh1

1 � Xh2
2 � � � � � XhK

K consisting of K levels, with mesh spacing h1 > h2 > � � � > hK , with the coarsest grid Xh1
1 covering X. Each

level Xh‘
‘ consists of a union of non-overlapping rectangular regions, or patches, at the same resolution h‘. When there is no

risk of confusion we will drop the hl superscript and simply refer to Xl. This hierarchical representation allows operations on
Xc to be implemented as operations on individual levels Xl, which in turn are decomposed into operations on individual
rectangular patches. This property facilitates reuse of software written for regular grids. Fig. 1 shows a SAMR grid with
K ¼ 3 and two patches on each of the two refinement levels. Note that while each level is nested in the next coarser level,
there is no requirement that a patch at one refinement level is nested fully in a patch at another refinement level, i.e., a fine
patch at refinement level l may lie over one or more coarser patches at refinement level ðl� 1Þ. Fig. 2 shows the decompo-
sition of a fairly complex SAMR grid with six refinement levels into its constituent refinement levels and patches, as is
encountered in our simulations.
4.2. Function evaluation on SAMR grids

For a viable JFNK solver, a given application only needs to provide methods to evaluate F, set up a preconditioner, and
apply the preconditioner. By generalizing these steps to a SAMR grid hierarchy, JFNK can be readily adapted to SAMR appli-
cations. In this work, we use the PETSc parallel implementation of JFNK [3], which is made SAMR-aware via the PETSc-SAM-
RAI interfaces described in [46]. Considerations for evaluating F are described next.



Fig. 1. Example of a multilevel SAMR grid with three levels.

Fig. 2. The decomposition of a SAMR grid into its constituent refinement levels.
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4.2.1. Single-grid discretization
In order to discretize F [given by (6)] in space, a cell-centered collocated finite-volume scheme is used for U; J;U, and W.

The magnetic field, ~B ¼ ðB1;B2ÞT, and the velocity,~v ¼ ðu1;u2ÞT, are also stored at cell centers, and are computed using cen-
tered differences from W and U, respectively, using the discrete curl operations:
B1
i;j ¼ �

Wi;jþ1 �Wi;j�1

2hy
;

B2
i;j ¼

Wiþ1;j �Wi�1;j

2hx
;

ð12Þ
and
u1
i;j ¼ �

Ui;jþ1 �Ui;j�1

2hy
;

u2
i;j ¼

Uiþ1;j �Ui�1;j

2hx
:

ð13Þ
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We note that this discretization ensures that the divergence-free conditions on ~B and ~v are satisfied locally to numerical
round-off.

Diffusive operators are discretized in each cell ði; jÞ by first computing approximate face-centered diffusive fluxes and
then summing over the faces of each cell resulting in the standard five-point finite-volume discretization:
1
hxhy

Z
Xi;j

r � rWdA � Wiþ1;j �Wi;j

h2
x

�Wi;j �Wi�1;j

h2
x

þWi;jþ1 �Wi;j

h2
y

�Wi;j �Wi;j�1

h2
y

: ð14Þ
Advective-like quantities (such as ~v � r and ~B � r) are discretized using non-conservative centered differences. Such a dis-
cretization is appropriate in the reduced MHD context because the velocity is solenoidal, and hence no shock phenomena
are supported (thus justifying the use of centered differences). Furthermore, for solenoidal fields, the nonlinearly robust, fi-
nite-volume conservative discretization for advective terms in cell-centered representations, ZIP [31,13], trivially results in
the non-conservative form. So, in single grids, there is no inconsistency between using the non-conservative advective form
and our generic finite-volume treatment. The situation is different, however, at coarse–fine interfaces, and this is discussed
in the next section.

For non-conservative advective quantities, we employ the standard cell-centered difference discretization for the gradi-
ent operator, which can be derived by using a variant of the Gauss theorem for gradients on each cell:
Z

Xi;j

rWdA ¼
Z

oXi;j

W~nds
where~n is the unit outward-facing normal on oXi;j, and approximating the face centered values by averaging from cell cen-
ters. In a single grid, this results in the well-known formula:
1
hxhy

Z
Xi;j

rWdA ¼ Wiþ1;j �Wi�1;j

2hx

~iþWi;jþ1 �Wi;j�1

2hy

~j: ð15Þ
4.2.2. Extension to SAMR grids
The discretizations described in the previous subsection are valid in the interiors of individual patches as well as at the

boundaries between two patches in the same refinement level. However, in order to maintain accuracy, changes are required
at the boundaries between coarse and fine patches. Fig. 3 (left) shows the interface between a coarse and fine patch. We use
ghost cells (both coarse and fine) for communication at coarse–fine interfaces, as well as between patches in the same refine-
ment level. A fine ghost cell (Fig. 3, center) overlaps one coarse cell. A coarse ghost cell (Fig. 3, right), however, lies under-
neath four fine cells when a refinement ratio of 2 is used.

For computations of fine ghost cell values at coarse–fine interfaces, data is quadratically interpolated from a combination
of coarse and fine grid cell data. Fig. 4 (left) shows the coarse grid cells that would be involved in performing quadratic tan-
gential interpolation of coarse-grid data to align it with fine-grid data. Fig. 4 (right) shows the piecewise quadratic normal
interpolation involving fine cells to calculate the fine ghost cell value. Once data has been interpolated to fine ghost cells, fine
cells at coarse–fine interfaces can be treated identically to cells that lie in the interior of the fine patch. Fig. 4 only shows the
simplest case where a sufficient number of coarse cells (in this case, three), are available to do standard quadratic interpo-
lation tangential to the interface. In general, for block-structured AMR, many special cases need to be accounted for, where
two or more fine patches may be adjacent to each other, resulting in very irregular coarse–fine interfaces (see for example
Fig. 2). We do not detail the adjustments needed in each of these cases to interpolate data quadratically, due to space lim-
itations. However, [2] provides a glimpse of the types of adjustments required.

Regarding coarse ghost cells at coarse–fine interfaces, their treatment is done as follows:
Fig. 3. (Left) A coarse–fine interface. (Center) Fine ghost cell. (Right) Coarse ghost cell.



Fig. 4. Schematic of interpolation. (Left) Crosses show coarse grid data aligned with fine grid data by interpolation. (Right) Open circles denote fine ghost-
cell data obtained by interpolation from aligned coarse data and fine grid data.
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4.2.2.1. Magnetic and velocity fields. ~B and~v are computed from W and U using centered differences. While this maintains the
vector fields divergence-free everywhere, it requires values of W and U to be available at the coarse ghost cells. A simple
arithmetic averaging of fine W and U data to coarse ghost cells produces second-order-accurate coarse values, and therefore
the resulting~B and~v are only first-order accurate. Local first-order accuracy at coarse–fine interfaces is unlikely to affect the
global second-order accuracy of the calculation when the number of coarse–fine interface cells is small relative to the total
number of cells. However, Ref. [1] gives examples of cases (not unlike the situations present in our simulations) where the
number of coarse–fine interface cells can be up to 30% of the total number of cells. In such cases, global accuracy will be
affected by the local first-order accuracy at coarse–fine interfaces. To avoid this situation, we use piecewise tensor-product
cubic interpolation of fine-grid data for interpolating W, U to coarse ghost cells. This, in turn, results in second-order discret-
izations for the vectors at coarse cells adjacent to the coarse–fine interface.

4.2.2.2. Diffusion operators. To compute the numerical diffusive fluxes at coarse cells adjacent to the coarse–fine interface, it
is possible to use coarse ghost cell values underlying the fine grid. However, for flux conservation, we compute the diffusive
fluxes at fine cell faces (as described in Section 4.2.1) and average them down to provide the coarse flux at the coarse face.

4.2.2.3. Advection operators. Advection operators at coarse–fine interfaces also employ the single-grid non-conservative form
used within patches (Section 4.2.1). This form is advantageous because it avoids finding vector quantities at coarse–fine
interfaces, and results in a more robust SAMR implementation. However, within a finite-volume context, it entails an implicit
assumption that the solenoidal vector fields are constant on coarse–fine boundary cells. We have not found this assumption
to affect the accuracy of our simulations appreciably. For the discretization of the non-conservative advection operators at
coarse-patch boundary cells, we proceed as indicated in Section 4.2.1 and find coarse face-averaged values of the advected
quantity. Here, this is done by averaging fine face-averaged data [29]. (The alternative is to compute a coarse face-averaged
value using coarse ghost cell data, but this does not work as well.)

4.3. Regridding

For fully-dynamic AMR simulations, the grid hierarchy will change during the simulation as the solution evolves in time
and space. This involves the addition of fine patches in regions where additional resolution is required and the removal of
patches in regions where coarser resolution is sufficient. The regridding process involves using some refinement indicator to
determine required grid resolution, and then constructing a new grid hierarchy based on this information. The ideal refine-
ment indicator is a sharp estimate of the spatial error that is inexpensive to compute. When such an estimate is not available,
refinement indicators that detect features in the solution, such as regions of large gradients or curvature, are used. We detail
the refinement indicators we employ in this study in Section 5.

Once regridding is done, data needs to be transferred from the old grid hierarchy to the new one. Typically, the solu-
tion obtained on the old grid hierarchy is no longer a solution on the new grid hierarchy. This has been observed in our
simulations as well as reported by others [10]. Two approaches are common in the literature. One approach, referred to
as the ‘‘warm restart” [9], continues the time integration on the new grid hierarchy (with a time step comparable to that
before regridding) using the interpolated data on the new grid hierarchy. The second approach, called a ‘‘cold restart”
[9], alters the time step and possibly the time integration scheme to account for regridding and introduction of spatial
errors.

In this study, we use a third approach. Cubic interpolation is used to transfer data from the old grid hierarchy to the
new hierarchy. This is done for both newly refined and de-refined regions. As we mention in the previous paragraph,
the interpolation of the data from the old to the new grid hierarchy typically introduces interpolation errors. These



8864 B. Philip et al. / Journal of Computational Physics 227 (2008) 8855–8874
are reflected in a nonlinear function residual that no longer satisfies the user-specified nonlinear solver tolerances. To
correct for this, after interpolation of the required vectors (including previous time-step solutions, required for the time
integration scheme), we re-solve for the current time step solution on the new grid hierarchy, using the solution inter-
polated from the old grid hierarchy as an initial guess. This synchronizes the current time step solution with the new
grid hierarchy before advancing in time. Numerically, this procedure is robust, and avoids propagation of interpolation
errors during regridding steps. We have confirmed the benefits of this approach by comparing time-evolving SAMR solu-
tions against uniform-grid ones. A detailed comparative evaluation of all three regridding approaches is left for future
work.

4.4. Preconditioning and the fast adaptive composite grid method

Physics-based preconditioning, as described in Section 3.2, requires the inversion of the parabolic operator
PSI ¼Lg � h2r � ð~B0D

�1
m
~BT

0rÞ. The operator r � ð~B0D
�1
m
~BT

0rÞ is negative definite and self-adjoint. The discretization of this
operator follows [57] so that it is compact (i.e., on a nine-point stencil), and the resulting matrix is symmetric negative def-
inite. We note that, at coarse–fine interfaces, symmetry is lost. The convective operator in PSI is discretized using a first-order
upwind scheme (instead of the centered differences employed to evaluate the nonlinear residual) for robustness of the FAC
smoothing step (see below). This leads to a better conditioned operator, which increases the robustness of the preconditioner
but does not affect the accuracy of the solution [which is determined by (7)].

On a SAMR grid, the inversion of PSI is performed efficiently by the FAC method [42,43]. FAC extends techniques from
multigrid on uniform grids to AMR grids. FAC solves problems on AMR grids by combining smoothing on refinement levels
with a coarse-grid solve using an approximate solver, such as a V-cycle of multigrid. First we introduce some notation to
describe the FAC algorithm:

	 Ilc : Xc ! Xl and Ic
l : Xl ! Xc , respectively denote restriction and interpolation operators between the composite SAMR

grid, Xc , and an individual refinement level. Here, we use bilinear interpolation for Ic
l and simple averaging for Ilc .

	 Il‘þ1 : Xl ! X‘þ1 and I‘þ1
l : X‘þ1 ! Xl, respectively denote restriction and interpolation operators between consecutive

refinement levels.
	 Lc is the composite fine grid discrete operator obtained by discretizing the PDE on Xc , and Ll approximates Lc on level ‘.

With this notation, we can specify the FAC method as in Algorithm 1. After an initial residual is computed, smoothing is done
on each level to determine a correction to the solution on that level. The levels are treated sequentially, from finest to coars-
est, followed by a solve on the coarsest grid and then smoothing and correction from the coarsest to the finest levels. Algo-
rithm 1 depicts an FAC V-cycle; as with multigrid methods, it is possible to specify alternative schedules for visiting levels,
such as slash cycles or W-cycles.

Algorithm 1. FAC

Initialize: rc ¼ f c �Lcuc; f l ¼ Ilcrc

foreach Xl; ‘ ¼ J; . . . ;2

Smooth: Llel ¼ f l

Correct: uc ¼ uc þ Ic
le

l

Update: rc ¼ f c �Lcuc

Set: f ‘�1 ¼ I‘�1
c rc

Solve: L1e1 ¼ f 1

Correct: uc ¼ uc þ Ic
1e1

foreach Xl; ‘ ¼ 2; . . . ; J
Update: rc ¼ f c �Lcuc

Set: f l ¼ Ilcrc

Smooth: Llel ¼ f l

Correct: uc ¼ uc þ Ic
le

l

Algorithm 1 makes clear the multiplicative nature of FAC: the residual is updated with the latest correction information
before each smoothing pass can proceed. To be fully effective, each smoothing pass must properly account for the data
dependencies among different patches within a refinement level. In our calculations, we use red-black Gauss–Seidel smooth-
ing on each refinement level. We also have the capability to use weighted-point-Jacobi or zebra-line Gauss–Seidel smooth-
ing. The correction steps require synchronization of the composite grid solution to make it consistent on all refinement
levels. Note that the residual update can, in principle, be computed only on the most recently corrected refinement level plus
a small border on the next coarser level, but we have found that residual evaluation is not expensive enough to justify this
optimization. On the coarsest level, we use one V-cycle of hypre’s [22] implementation of semi-coarsening multigrid (SMG)
[56]. Note that an isotropic coarsening multigrid algorithm would work just as well in this context, but SMG was chosen
based on hypre availability considerations. The small problem sizes on the coarsest level ensure that the costs for using
SMG are not significant.
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5. Numerical results

This section introduces several challenging test cases with the goal of demonstrating two main aspects of our implicit
AMR implementation: algorithmic performance, and its accuracy properties. In regards to performance, we demonstrate that
the convergence properties of the iterative approach are essentially independent of the number of grid levels present in the
simulation (for equivalent fine-level resolution), and that it has good scaling properties with respect to the total number of
unknowns. Both these aspects are central in a scalable implicit AMR algorithm.

Accuracy and error propagation in the SAMR context is also a major subject of this section. Clearly, the main motivation
for using an AMR-based strategy is to minimize the number of unknowns required to achieve a given error level, by using
fine resolution only where it is needed. However, time integration on SAMR grids can pose additional difficulties and intro-
duce sources of error not encountered in uniform-grid calculations, especially at the interface between coarse and fine
refinement levels. For nonlinear problems, these errors can exhibit themselves in unexpected ways that are often hard to
identify and offset. In fact, the potential exists that errors generated at coarse–fine interfaces, combined with the wrong tem-
poral integrator, may overwhelm the simulation and result in errors that scale with the coarsest (instead of the finest) res-
olution in the computational mesh.

A fundamental aspect for optimal error control in SAMR is the adequate placement of patches within the domain. Careless
placement of patches can in fact offset any gains that may be obtained with the additional resolution provided. Optimal
placement of patches, in turn, requires suitable error estimators. We will demonstrate the importance of this issue numer-
ically later in this section. For our test problems, we employ refinement indicators based on the magnitude of the current, J,
and the curvature in the vorticity, U, as a guide for patch placement. In particular, we compute the cell quantities
s1
i;j ¼

jðJÞi;jj
maxði;jÞjðJÞi;jj

; s2
i;j ¼
jh2

x ðUxxÞi;jj þ jh
2
yðUyyÞi;jj

0:2maxi;jjUi;jj
: ð16Þ
Here, Uxx and Uyy denote second-order partial derivatives of the vorticity in x and y, respectively. The maximum values for J
and U in (16) are calculated over each refinement level. Cells where s1

i;j > �1 or s2
i;j > �2 where �1 and �2 are user chosen

thresholds, are tagged for refinement. In this application �1 ¼ 0:65 and �2 ¼ 0:3. Similar refinement indicators are used in
Refs. [10,1].

For the accuracy tests, since analytic solutions are not available, the numerical error is computed by comparing a given
SAMR simulation against a uniform fine-grid solution (1024� 1024 unless otherwise specified), obtained with an extremely
small time step.

In what follows, we discuss these issues for three test problems: a tearing mode problem, the island coalescence problem,
and the tilt instability problem. All these problems feature the dynamic development of thin current layers, and benefit from
an AMR treatment.

5.1. Tearing mode problem

The first problem we consider is the tearing mode problem of [16]. Tearing modes are resistive instabilities, with behavior
strongly dependent on the details of the resistive layer at the rational surface (defined as the surface where ~B �~k ¼ 0, with~k
the wavevector of the magnetic perturbation). As the resistive layer thickness scales as

ffiffiffigp , the resolution issues become
increasingly challenging with smaller g.

Following [16], we pose the problem in a square domain ½0;4� � ½0;1�, with periodic boundary conditions in x and homo-
geneous Dirichlet boundary conditions in y (as specified in Section 2) for all variables. The initial conditions for this problem
are U0ðx; yÞ ¼ U0ðx; yÞ ¼ 0, and W0 given by the Harris sheet equilibrium:
W0ðx; yÞ ¼
1
k

ln cosh k y� 1
2

� �� �� �
:

The initial current J0 is found as J0 ¼ DW0. For the runs below, we have used k ¼ 5 and g ¼ m ¼ 10�3.
Fig. 5 shows the evolution of the system at different times on a dynamic SAMR grid with four refinement levels. The coars-

est level is a uniform 32� 32 grid, with the finest level providing the same resolution as a 256� 256 uniform grid. The
refinement levels track the evolution of the tearing mode, providing resolution only in localized regions.

5.1.1. Performance
In general, algorithmic scalability of a PDE solver numerical algorithm requires that work per iteration be proportional to

the problem size and that the number of iterations be independent of the problem size. In the context of SAMR, however, it is
difficult to test for scalability directly by performing grid convergence studies, because the problem size is difficult to predict
a priori when one changes base grids and levels of refinement for a given simulation. To overcome this limitation, in this
work we follow two figures of merit to characterize algorithmic performance in a SAMR context. The first one is the same
as in single-grid approaches, and measures algorithmic performance under uniform-grid refinement. The second one is
SAMR-specific, and measures the effects on performance of changing coarse-grid resolutions and SAMR levels of refinement
for a fixed maximum resolution. We define a SAMR solver to be equivalent-to-uniform-mesh if the SAMR solver performance



Fig. 5. Time snapshots of current (top) and vorticity (bottom) for the tearing mode problem.
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depends only on the maximum effective resolution (i.e., solver performance is independent of base grid refinement and the
number of refinement levels). Furthermore, we define a SAMR algorithm to be scalable if it scales under uniform-grid refine-
ment, and if it features equivalent-to-uniform-mesh performance.

Performance data for the tearing mode simulation are presented in Table 1. These results have been obtained using
gk ¼ 0:1, �rel ¼ 0:0 and �abs ¼ 10�4, and two iterations of the SI preconditioner. Within the preconditioner, two V(3,3) cycles
of FAC were used to invert the semi-implicit operator outlined in Section 3.2. The implicit time step has been fixed to a multi-
ple of the explicit CFL, Dt ¼ 140DtCFL (which corresponds to a time step of Dt ¼ 5 for the coarsest 64� 32 grid), and we have
averaged the performance results over the course of the simulation up to Tmax ¼ 250.

The first column of Table 1 specifies the resolution of the coarse grid, while levels refers to the number of refinement lev-
els active on the SAMR grid. In Table 1, NNI is the number of nonlinear iterations and NLI is the number of linear iterations
per time step. A standard uniform-grid convergence study is found in the Levels = 1 column, and shows that the solver fea-
tures a constant NNI and a very mild increase in NLI (which only increases by 50% for a 64-fold increase in number of degrees
of freedom). However, such mild increase was also observed in uniform-grid results in Ref. [16] for the same test problem
and same values of g, m, and disappeared for smaller values of these parameters. SAMR-solver-equivalence can also be estab-
lished from this table, since the maximum fine resolution is kept constant when moving diagonally from bottom left to top
right, for example from the cell corresponding to the 512� 256 grid with one refinement level to the cell with a 64� 32 base
grid and five levels of refinement. From Table1, we can readily check that both the number of nonlinear iterations, NNI, and
the number of linear iterations, NLI, grow very weakly along diagonals, which establishes that our SAMR solver is effectively
equivalent to the uniform-grid one.

This equivalent-to-uniform SAMR solver performance is obtained for significantly less computational effort and memory
storage than uniform grids would require. For example, the 512� 256 run requires a total wall-clock time of 29,919 s, while
the equivalent 64� 32 run with 4 levels of refinement only requires 17% of that, 4998 s (timings obtained on a MacBook Pro
Table 1
Summary of performance for tearing mode

NNI NLI

Resol.nLevels 1 2 3 4 5 1 2 3 4 5
64� 32 2.4 2.7 2.8 2.8 2.7 8.2 10.3 14.1 15.8 16.4

128� 64 2.3 2.6 2.7 2.6 – 8.0 12.9 15.1 16.1 –
256� 128 2.0 2.1 2.4 – – 9.4 13.9 12.8 – –
512� 256 2.0 2.1 – – – 12.4 13.3 – – –

NNI: average number of nonlinear iterations; NLI: average number of linear iterations per time step.
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with a 2.33 GHz Intel Core 2 Duo processor, 2 GB of RAM, running Mac OS X 10.4.10.). Furthermore, on average, the 64� 32
run with 4 levels of refinement requires only 14% of the number of degrees of freedom of a uniform 512� 256 run. Note that
the strong correlation between the reduction in degrees of freedom and the reduction in CPU time is also a consequence of
the equivalent-to-uniform property of our SAMR implementation.

Similar results both in solver performance as well as time and memory savings were obtained in all other simulations
reported in this paper.

5.1.2. Time-integration errors
We seek to characterize the importance of adequate interpolation order during regridding to avoid discretization errors,

and of robust damping in the implicit temporal integration scheme to avoid error propagation throughout the domain.
A common approach for time integration on AMR grids is to use linear interpolation to transfer data from an old grid hier-

archy to a new grid hierarchy during regridding. For problems with discontinuous coefficients and steep solution gradients
[47], this works better than higher-order interpolation schemes. However, linear interpolation is not suitable for all prob-
lems. Fig. 6 depicts the error in J on a SAMR grid after one regrid operation at t ¼ 2:5 and subsequent time-stepping using
Crank–Nicolson (CN) and quadratic interpolation at coarse–fine interfaces up to t ¼ 7:5. Linear interpolation was used to
transfer data from the old to the new grid hierarchy during regrid. The concentration of discretization errors at coarse–fine
interfaces introduced during regridding is evident, despite the fact that quadratic interpolation was used at coarse–fine
interfaces during the time evolution. Furthermore, the poor damping properties of CN preserves the memory of generated
errors, even if the location of the coarse–fine interfaces changes. To show this, we transfer the previous solution at
t ¼ 7:5 to a uniform mesh with resolution equivalent to the finest SAMR patch, and run the simulation further in time to
t ¼ 42:5. The result is depicted in Fig. 7, and shows that the error in J generated during regridding at coarse–fine interfaces
remains throughout the calculation. We note that the magnitude of the error does not appear to be changing significantly.

A related test with a different initial grid configuration is shown in Fig. 8. In this case, the error in J is largest on the left
and right coarse–fine interfaces at time t ¼ 7:5. After several dynamical regridding operations, the solution has memory of
errors generated at all coarse–fine interfaces during regridding, and at time t ¼ 42:5 the error (Fig. 9) traces all coarse–fine
interfaces that have been present during the simulation. In this example, it is clear that, at some locations, the error is actu-
ally being amplified further, as for example at the left and right coarse–fine interfaces present in the initial grid hierarchy at
t ¼ 7:5.

The previous examples illustrate potential sources of error that can accumulate due to a combination of a poor temporal
integrator (CN) and low-order interpolation during regridding, even if higher-order interpolation is used at coarse–fine inter-
faces. Low-order interpolation generates spatial errors that are not damped in time by the temporal scheme. Coarse-fine er-
rors mostly disappear when sufficiently high-order interpolation is used (both at regrid operations and subsequently during
time evolution) in combination with a robustly damping temporal scheme. Fig. 10 shows plots of the error in J at times t ¼ 10
and t ¼ 50, using cubic interpolation at regrid, quadratic interpolation in between regrid operations, and BDF2 as the time
integrator. In this case, we see that there is no accumulation of error at coarse–fine interfaces, even after several regrid oper-
ations have taken place.

5.2. Island coalescence

In the island coalescence problem, two magnetic islands (current channels) attract and reconnect. In resistive MHD,
and during the reconnection process, a thin, elongated current sheet forms at the reconnection site, which governs the
Fig. 6. Grid hierarchy and error in J after one regrid operation at t ¼ 2:5 and several time steps up to t ¼ 7:5.



Fig. 7. Grid hierarchy and error in J after a second regrid operation to a uniform mesh at t ¼ 7:5 and subsequent time-stepping until t ¼ 42:5.

Fig. 8. Grid hierarchy and error in J at t ¼ 7:5 after one regrid operation at t ¼ 2:5.
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reconnection rate, and therefore the global dynamics [36]. As in the tearing mode problem, the current thickness scales asffiffiffigp , and therefore the problem becomes computationally more challenging for smaller resistivities.
The island coalescence problem equilibrium is given by U0ðx; yÞ ¼ U0ðx; yÞ ¼ 0, and W0 defined as [25]:
W0ðx; yÞ ¼ �kW ln cosh
y
kW

� �
þ � cos

x
kW

� �� �
; ð17Þ
where kW ¼ 1
2p is the current sheet equilibrium scale length, and � ¼ 0:2 is the island width. The computational domain is

½�1;1� � ½�1;1�. Boundary conditions are Dirichlet in y (as specified in Section 2), and periodic in x. Both g and m are set
to 10�4 for the calculations in Fig. 11 while they are both set to 10�3 for the numerical studies presented in the next subsec-
tion. The calculation is started with a perturbation in W. Full dynamical SAMR regridding is employed to adapt to developing
features. The island configuration at the early stages of the coalescence process is shown in Fig. 11 (left). The configuration at
the peak of the reconnection rate, well in the nonlinear stage, is shown in Fig. 11 (right), and shows the formation of the
current sheet in the symmetry plane between the islands. The multiscale nature of this problem is evident.

5.2.1. Numerical error generation and propagation
As mentioned earlier, the purpose of grid adaptation is to minimize the number of degrees of freedom required for a given

simulation, while being compatible with a given numerical error level. In practice, the expectation is that the overall numer-



Fig. 9. Grid hierarchy and error in J at t ¼ 42:5 after several regridding operations.

Fig. 10. Plots of error in J for t ¼ 10 and t ¼ 50 using BDF2 for time integration and cubic interpolation for regridding operations.
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ical error of the simulation does not increase due to the presence of patches, and the related coarse–fine boundary treatment.
Otherwise, it would defeat the purpose of using a patch-based adaptive scheme in the first place.

We use the island coalescence problem to characterize the generation and temporal propagation of errors in our SAMR
implementation. We focus on two main aspects of error generation in SAMR: (1) the treatment of coarse–fine interfaces at
patch boundaries and (2) the placement of patches themselves. The former is fundamentally a spatial discretization issue,
whereas the latter is more related to error estimation. We note that, once the error estimation process tags cells on the
AMR grid hierarchy as requiring refinement, we use the standard Berger–Rigoutsos algorithm [6] implemented in SAMRAI
to generate the patches themselves. The parameters used were 0.85 for the efficiency tolerance and 0.85 for the combine
efficiency. The efficiency tolerance determines how many cells have to be tagged in a box for the formation of a patch and
the combine efficiency determines when two patches are combined into one. Further details are provided in the SAMRAI
documentation.

Fig. 12 depicts several time histories of error propagation in SAMR simulations featuring different base grids and levels of
refinement. The error is obtained with an exact error detector, which compares the SAMR solution with the 1024� 1024
reference solution. Fig. 12 shows the volume weighted l2-norm of the error (which approximates the L2-norm). We have used
a fixed time step in the calculation to isolate spatial errors. As a consequence, and as can be observed in Fig. 12, the time



Fig. 11. Snapshots of the current at early stages of the coalescence process (t ¼ 4, left) and at the peak of the reconnection (t ¼ 8, right) during the
coalescence process.
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history of the numerical error mimics the evolution of the physical instability (i.e., exponential growth followed by nonlinear
saturation). The point of this plot is to establish that the error is fundamentally a function of the finest resolution employed,
and not a function of the base grid size or the number of levels of refinement. For instance, the 64b3l, 128b2l, and 256b1l
simulations feature the same error (time histories are actually superimposed), while using different base grid refinements
and number of grid levels. The same is true for 64b4l, 128b3l, 256b2l, and 512b1l (although error differences are more
noticeable due to the log scale of the plot). Another side point from this figure is the impact that adding a level of refinement
has on the overall error of the computation: the error decreases by a factor of four on average, similar to the error reduction
that would be obtained by uniform refinement.

The effect of choice of refinement indicator is depicted in Fig. 13, where time histories of the numerical error resulting
from two different error estimators are provided. The exact error estimator defined above is compared against the ad-hoc
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Fig. 13. Time histories of numerical errors for the island coalescence problem with different error estimators for patch placement.
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indicator defined in (16). The error plots labeled ‘64b4l-exact’ and ‘128b3l-exact’ (which both have 512� 512-equivalent
resolution) depict the magnitude of the L2 error on an AMR grid when the placement of patches is determined by the exact
error detector. Similarly, the error plots labeled ‘64b4l-feature’ and ‘128b3l-feature’ depict the error on an AMR grid deter-
mined using the ad-hoc error estimator in (16). As can be seen from Fig. 13, the 64b4l-exact and 128b3l-exact plots lie on top
of each other, demonstrating no dependence of the numerical error on the number of refinement levels. On the other hand,
appreciable differences between the 64b4l-feature and 128b3l-feature error plots demonstrate a dependence of the numer-
ical error on the number of refinement levels. Furthermore, comparison of the 64b4l-exact and 64b4l-feature plots (or the
128b3l-exact and 128b3l-feature) shows clearly that large errors (up to a factor of 5 in the nonlinear phase) result from
employing the ad-hoc error estimator instead of the exact one. These error differences seem to originate from differences
in both the placement of patches as well as the number of degrees of freedom made available per patch. This result under-
scores the importance of further research on reliable error estimators for adaptive-grid applications. This is left for future
work.

5.3. Tilt mode

The third model problem we consider is the tilt-mode instability [50,60,33]. The initial conditions are
U0ðx; yÞ ¼ U0ðx; yÞ ¼ 0, and W0 given by:
W0ðx; yÞ ¼
2

kJ0ðkÞ
J1ðkrÞ cosðhÞ if r 6 1

ðr � 1
rÞ cosðhÞ if r > 1

(

with J0 ¼ DW0. The boundary conditions are periodic in x and Dirichlet in y for all variables (as specified in Section 2).
The system is perturbed from its initial equilibrium with a rotational perturbation in U of the form: dU ¼ 10�3e�r2 . The
domain for this problem is ½�2p;2p� � ½�5;5�. The parameter k is the zero of the Bessel function of the first kind, i.e.,
J1ðkÞ ¼ 0, and both g and m are set to 10�3. The refinement criteria for this problem is also given by (16). Fig. 14 shows
snapshots of the current and vorticity during the evolution of the tilt instability at times t ¼ 4:0 (early in the linear
phase) and t ¼ 7:0 (well in the nonlinear regime). This calculation required seven levels of refinement starting from a
coarse initial 64� 64 mesh.

As evolving features in this problem are extremely small compared to the domain size, this AMR calculation on average
only required 0.36% of the degrees of freedom of a uniform-grid calculation (a uniform-grid calculation would have required
67,108,864 degrees of freedom, which corresponds to a 4096� 4096 uniform grid with four unknowns per grid cell). This
example serves to illustrate the significant savings that AMR can provide over uniform-grid calculations. We note that
the relatively small number of degrees of freedom enabled us to perform this calculation on a workstation, while a parallel
machine would have been required to perform the uniform-grid calculation.



Fig. 14. Current (left) and vorticity (right) during the evolution of the tilt instability at times t ¼ 4:0 (top) and t ¼ 7:0 (bottom).
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6. Conclusions

We have described the implementation of an algorithmically scalable, fully implicit, SAMR simulation tool for 2D reduced
resistive MHD. The tool employs Jacobian-free Newton–Krylov methods as the solver engine. We use the reduced MHD sol-
ver developed in [16] as a starting point, albeit with several modifications. Following [58], we have reformulated the original
problem (in terms of flux, vorticity, and streamfunction) using the current as a dynamic variable instead of the flux. This
avoids issues with SAMR and the high-order derivatives in terms like ~B � rðDWÞ present in the flux formulation.

We have also extended the optimal ‘‘physics-based” approach developed in [16] (which employed multigrid solver tech-
nology in the preconditioner for scalability) for this application in two ways. Firstly, we have adapted the preconditioner for-
mulation to deal with J instead of W, as required. Secondly, we have extended the multilevel treatment in [16] to SAMR grids
using the well-known Fast Adaptive Composite grid (FAC) method [42]. As a result, our approach inherits the algorithmic
benefits of a multilevel treatment and the accuracy benefits of dynamic grid adaptation.

We have demonstrated such benefits with several challenging tests. A grid convergence study has shown that the SAMR
solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and
that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation
demonstrates that piecewise cubic interpolation at coarse–fine interfaces, combined with a robustly damping second-order
temporal scheme such as BDF2, is required to minimize impact of such interfaces on the overall error of the computation. We
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also demonstrate that our implementation features the desired property that, when a reliable error estimator is employed,
the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid refinement
or on the number of refinement levels present during the simulation.

An open aspect in our implementation is the use of more grounded, rigorous error estimators to select refinement
patches, instead of our ad-hoc approach. In fact, we have demonstrated numerically that our ad-hoc error estimator, while
effective, is far from optimal when compared with an exact one. In future work, we will explore more rigorous error estima-
tors, such as the s (or two-grid) error estimator, which employs differences between two grid resolutions to estimate the
truncation error. The approach, which is rigorous in the context of linear, conservative operators, can be used effectively
for non-linear ones (see e.g. Refs. [11,24,41,23] for theory and practical implementation details and effectiveness of this error
estimator in various contexts; in particular, Ref. [23] employs it for an anisotropic AMR implementation).
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